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Abstract

In this report, certain applications of the Cramer-Rao

bound to problems in radar echo time-of-argival estimation are

* ,presented. These applications encompass point target echos,

two-point target echos, and distributed target echos. With

respect to point targets and two-point targets, a modified Cramer-

Rao bound is derived and the results are substantially tighter

than those of the conventional Cramer-Rao bound. In applying the

Cramer-Rao bound to distributed targets, a sampled-data formulation

is presented and a numerical example corresponding to a wake

parameter estimation problem is given to illustrate the results.
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1. Introduction

The familiar Cramer-Rao bound on the variance of estimates

is particularly useful since it is frequently easy to calculate,

and is generally a tight bound for a wide class of estimators

when the signal-to-noise ratio is high (References [1]-[4]).

Although there are c-her bounds also tight for small signal-to-noise

ratios, they are usually more difficult to obtain (References Il]

-[6]). For this reason, the Cramer-Rao bound is often used in radar

applications.

In estimating unknown (deterministic or random) parameters

from noisy measurements, there often exist nuisance parameters

(deterministic or random). In radar applications, the parameter

of interest may be the radar return time-of-arrival, or target

range, while the nuisance parameters may be signal amplitude and/or

phase. Although we often do not care to estimate these nuisance

parameters, the estimates of interesting parameters are nevertheless

depenident on them. In the usual application of the Cramer-Rao bound,

the marginal density of the measurement conditioned on the interest-

ing parameter is used so that the dependence on the nuisance para-

meter is never explicitly shown. This may sometimes result in

optimistic or even trivial bounds. In this report, we obtain a

modified bound by treating the nuisance parameters differently.

These modified bounds apply to a different, more restricted class

of estimators than the conventional Cramer-Rao bound, but are
I.
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useful in several radar applications where bounds tighter than the

ordinary Cramer-Rao bound are obtained.

The application of the Craner-Rao bound (ordinary and modified)

for estimates of parameters of a random signal is, however, usually

difficult to obtain. Random signals often occur in practice, for

example, the radar return from the wake trailing a high speed re-

entry vehicle. Returns of this kind are often thought of consisting

of a large number of radar scatterers with their relative amplitude,

phase, and location being randomly distributed. They are, therefore,

sometimes referred to as distributed targets. It was shown (Reference

[ 2 1) that the Cramer-Rao bound for a random signal, or a distributed

target, may be obtained via the solution of a rather complicated

integral equation. Except for a few special cases, the solution

can only be obtained by using approximations. In this note, we

consider the calculation of the Cramer-Rao bound for a certain

class of random signals via a sampled data approach. The random

signal considered is a conditional Gaussian process (Reference [2])

with known time varying mean and covariance functions. Since

in many radar applications, the data are often recorded and pro-

cessed in sampled form, the approach presented in this report is

believed to be practical and useful. A numerical example correspond--

ing to a wake parameter estimation problem is given.

2



This report is organized as follows. The modified Cramer-Rao

bound is described in Section 2. Its application to several point

targets is given in Section 3. The application of the modifiedI

bound to the estimate of time separation of two closely spaced

signals is presented in Section 4. In Section 5 we present the

sampled data approach to the calculation of the Cramer-Rao bound

for distributed targets. A numerical example is included to

illustrate the result. Two appendices are attached. In Appendix A

the laborious derivation required to obtain the final results of

Section 4 is given. There are at least two limiting cases for dis-

tributed targets. Under proper conditions, a distributed target

converges to a known target or a Rayleigh target. Derivations to

explore these relations are given in the Appendix B.

2. A Modified Cramer-Rao Bound

In this section, application of the Cramer-Rao bound to the

case wherein there are nuisance parameters is discussed. By treating

nuisance parameters in an unusual way, we develop a modified bound.

We shall, for simplicity, discuss only the scalar estimation

problem although results are easily extended to the multiple

parameter estimation problem. Two cases are considered.

CASE 1. Nonrandom Parameter

Let a be an unknown parameter which is to be estimated based

on a set of observations r. Let the joint probability density

function (PDF) be known, and equal to

3



r (R/a) (2.1)

The Cramer-Rao bound is a bound on the variance of any unbiased

estimator of a: a(r). It is:

0 > 2nr (R a) inP (R/a) 2] =C(a) (2.2)

aa lPr r

If the observation depends not only on"d' but also on a

"nuisance" parameter, e, then the bound also depends on the value

of 0. If e is random, with a known PDF, then the bound Js calculated

using

Pr (R/a) = Pr (R/6,a) p0 (0/a) dO (2.3)f
The bound then applies to estimators which are unbiased in a global

sense, but not necessarily for each value of 0. This leads to the I

following alternative procedure:

Let a(r) be an estimator of the prameter a which is unbiased i
for eve r_ value of the nuisance parameter 0. Then

a > E {C(a/O)} (2.4)
0aI I

4
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where C(a/e) is the Cramer-Rao bound calculated for each value of

6, and E denotes expectation over the random variable e.

The above result is obvious. For any estimator which is

unbiased for all 0, its variance aa2-,) for each partic,,iar a i6a

bounded by:

Y (6) > C(a/O) (2.5)

.4
where C~a/O) is calculated using

C(a/6) = -E--- lnP R ,a
faII

= lnp (R/6,a))J] (2.6)

Since the inequality holds for all 6 and since the estimate is

unbiased for all 6, it follows that:

~a =E~ E[ ((r)-a\1
a 6 r/e[ \ J

•0 E o•• �0^2 > E { c~a/0) } (2.7'

5
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CASE 2. Random Parameter

Let a be a random parameter which is to be estimated based

on a set of observations r. Let the joint PDF of r and a be known,

and denoted by

Pr,a (R,A) (2.8)

The Cramer-Rao bound on the variance of any unbiased estimator of

a is:

aY > C(a) =E inPr,a (R,A)1a r> 3aa [2 -

= Era [(- lnpr,a(RA))21 - (2.9)

If the observation depends also on a parameter 0, then the

bound also depends on the value of 0. If 0 is random, with a known

PDF, then one uses

Pr,a (RA) f Pr,a/e (RA/6) pa (e) dO (2.10)

I.i6
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The bound then applies to estimators which are unbiased in a global

sense, but not necessarily to estimators which are unbiased for

each value of i. This lead3 to the following alternate procedure:

Let a(r) be an estimator of the random variable a which is

unbiased for e value of the random nuisance parameter . Then:

0 2 E {C(a/o) '2.11)a -

where

C(a/9) = -E nP r,a/0 (RA/6)

E[(-. lnpr/ (RA/6))2]~ (2.12)

The proof follows that for nonrandom parameters.

Discussion:

The difference between our bounds and the standard Cramer-Rao

bound on the variance of estimators with a random nuisance parameter

is that our bounds apply to estimators which are unbiased for each

value of the nuisance parameter whereas the standard bound applies to

estimators which need be unbiased only over the ensemble. For

'I
7
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in.!tance, in the nortrandom paramete: case, if a(r) den3tes the

esti; atoor, then t!.e rt andiard aL* ýn 5 s.-tU Ified I :

E ) = fa(:) :r (R0 'a) dRd. a (2.13)

whereas our bouni is satistlfet: und./r t!,e more restricted condition:

SEr (a) = fi (?9pr/;.(R/--,a) dR a (2.14)

for all

Certainly, one is not alwa, s concerned that an estimator t-:

unbiased for all values ot tne nuizmnce parameter. Howp ..r, there

may be many applications where that property is desirable. For

instance, in estimating the time-ot--Arrival of a radar echo of random

amplitude, one would certainly like the cstimato- to be unbiased for

all values of signal amplitude. If the t... -f-arrival is a nonrandom

parameter, this requirement may be unreasonable if the signal amplitude

can be too small for reliable detection. However, such an unbiased

estimator can be conceived if the time-of-arrival is a random variable,

since its a priori distribution provides an unbiased estimate if the

signal is not detected. A later set of examples treats this case.

The modified bound which we have presented has a natural inter-

pretation. The quantity C(a/,) is the bound which is obtained under

!
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the assumption that the nuisance parameter e is known to the

estimator. The modified bound is obtained by simply averaging

this quantity over 0. One might expect that a bound obtained under

the assumption that the random nuisance parameter is always known

* to the estimator would not be as tight as one which does not make

this assumption. However, this is not always the case, as our

examples will demonstrate.

There is another alternative when a nuisance parameter

is present. That is, to estimate jointly the values of both the

nuisan~ce parameter and the desired parameter. This leads to the

Cramer-Rao bound for the multiple parameter case. To evaluate it

requires the evaluation of ½n(n+l) expectations of derivative of

logarithms of the joint PDF followed by the inversion of an n by

n Fisher Information matrix, where n is the number of parameters

estimated. Since, in practice, the estimator actually used is

frequently one which estimates nuisance parameters as well as the

desired parameter, e.g., a joint maximum likelihood estimator, such

a bound may be more representative of the actual situ~.tion. Un-

fortunately, the difficulty in evaluating the bound increases as

the number of nuisance parameters increases and may become intrac-

table rather quickly.

3. Point Targets

In this section, we apply the modified Cramer--Rao bound to

several point target configurations. Let s(t) denote the low pass

9



transmitted radar signal, the echo from a point target is therefore

the time delayed and complex modulated version of s(t). The complex

observation of the returned signal is:

r(t) = as(t-T) + w(t) (3. 1)

where: s(t) is the complex signal envelope

foo Is(t)12 dt = 1 (3.2)

w(t) is complex white Gaussian noise with spectral

density N /2 (two sided)

a is the complex signal amplitude

T is the unknown Time-of-arrival

For a fixed known value of a, the well known Cramer-Rao bound

for estimators of T is [31:

aG2 (E) > C (E) = (3.3)
T 2

N0

10
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signal root-mean-square bandwidth in radians/sec

2• fs(t+¶/2)s* (t-T/2) dt (3.4)dT -0 odr r=O

For a LFM radar pulse, the relation between a and the instan-

I taneous bandwidth B, in Hz, taking into account the weighting used

to reduce sidelobes, is 8 ; 1.2 B.

In practice, the complex signal amplitude a may fluctuate

according to some random distribution. Suppose that the complex

signal amplitude is random with phase uniformly distributed over

[o,27] and energy distributed according to a PDF p(E). Ideally,

we would wish the time-of-arrival estimator to be unbiased for all

! values of E. Following the discussion on the modified Cramer-Rao

bound, a bound on the variance of such an estimator is:

^2 > C P(E) dE (3.5). T 26 202 E
0

t]

I Several target fluctuation models were studied by Swerling [7].

In particular, we consider the Swerling II and IV models.

3.1 Swerling IV Targets

If p(E) corresponds to a Swerling IV ("one-dominant plus

Rayleigh") amplitude distribution [7]:
oi

S.
1

1. . .. .. .. .. .,



S- 2 ._E ..

-42

P(E) 4E 2 e E (3.6)
Eo

E 0 mean signal energy

then

^2 > = 3.7)

71 T -0 -- 2
N

0

Notice that the above bound is twice 3is large as that for

the known amplitude and phase case.

3.2 Swerling II Targets

If, on the other hand, p(E) corresponds to a Swerling

II (Rayleigh) amplitude distribution [71:

_E
E 0

p(E) = - e (3.8)
0

E 0 mean signal energy0

then, for this case in which low-energy signals are more likely

than in the previous case, the integral (3.5) for the bound diverges,

12

It



P i.e.,

N m -E/EN

Se (3.9)C 2 lira -E- WE OD

2ý E c-0o f

We have therefore shown that no finite variance estimator of (non-

random) time-of-arrival, which is also unbiased for all values of

signal energy, exists for Rayleigh amplitude distributions. For

S-4 the same amplitude distribution, the ordinary Cramer-Rao bound

exists, and is [21:

i: N

0

o2 > 1= C (3.1i0)
T - E oo2 N 8

One arbitrary remedy to this case is to only estimate target

range after a reliable detection of the signal. Another method,

which can be rigorously formulated, is to estimate the target range

only at the vicinity where the signal is likely to appear. This

leads to the following case.

3.3 Swerling II Targets with A Priori Information

Assuming that the time-of-arrival is random uith a normal

a priori distribution with variance (^A2, the standard Cramer-Rao
" ~T

13



bound is then:

Gý2 > Co0-1 + 1 1 (.11_ 1] 1(3.11)
T ~2

wher'_ C0 is the bound of equation (3.10), i.e., without a priori

information about T. Our modified bound is:

a^2 >1 e du
T E 2 + C

2', No 0
N0I I

wee(3.12)1 where

E 12 0 2 a 2
i ~o

Figure (3.1) shows the ratio of the modified bound (3.12) to

the standard bound (3.11) as a function of the parameter 8o•. Thus,

the resolution of the signal improves relative to the accuracy of

the a priori information as the abscissa increases.

So long as the a priori variance is nonzero, the modified

bound exists and exceeds the standard bound except for low signal-

to-noise ratio and relatively accurate a priori knowledge. We

therefore infer that for the Rayleigh channel the modified boundi
I

S...
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10- 3

01 2

01110 100 Iwo0

f?"? - (S IGNAL RMS BANDW IDTH) X (A( PRIORI STANDARD DEVIATION) i

Fig. 3.1. Comparison of modified and standard bounds on
variance of time-of-arrival estimates for a Rayleigh channel
where time-of-a.rriva1 is a random variable.
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is usually tighter than the standard bound for estimators of the

random time-of-arrival which are unbiased for all signal amplitudes.

4. Two-Point Targets - Length Estimation

Consider the radar application in which two scattering

centers are spaced closer the' '"- , signal resolution width. This

situation occurs when one attempts to estimate the length of a target

with only two dominant scatterers. Let the echo from the ith scat-

terer be denoted as ai s(t-T 1 ). The total received signal may be

expressed as

r(t) = a1 s(t-Tl) + a 2 s(t-t 2 ) + w(t) (4.1)

where aI and a2 are the complex signal amplitudes. The parameter

to be estimated is the time separation of the targets, T=T 1 -T 2 .
For fixed values of Jall and la2 1, a conventional way of evaluating

the Cramer-Rao bounds leads to the following bound [2].

Co(El'E2 + (4.2),022 E1 \2

No NoN0 0

where the E Jail2 are energies in the signals. This bound is

obtained by assuming that the T, an T2 a ' nonrandom parameters

and the arg(al) and arg(a 2 ) are random, uniformly distributed

on (0.27), and applies to joint estimators of all four parameters.

16



It does not include the effect of interference between the

signals, hence is tight only if the signals are well resolved.

To find the modified bound one first obtains the standard

bound for fixed 1all and I a2 i by evaluating and inverting a two

by two Fisher information matrix:

(4.3)

where 8 = arg(aI) - arg(a 2 )

d2

2p(8) 3(t+¶/2) S* (t-t/2) dt

I0
= signal autocorrelation function

Asiu~ing that 0 is uniform~ly distributed in (0,2n] and oJbtaining

the modified bound bir averaging (4.3) over f( yiel3

17
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R NMI
E + E

22
= 2~ ~- (..(2)

Normalizing the modified bound by the conventional bound, i.e.,

equation (4.2), yields

C(E 1,E) (4.5)____

4 C0 (EV 1 2)

In order to evaluate th~e above ratio numerically, a signal, model

must be chosen. Suppose the signal auto-~corta1ation function is

Gaussian-shaped

P (T) e- 1/2 (BT) 2  (4.,5)

Letting Z. OT

=normalized separation

and evaluating (4.5) yield

C 0(EVIE 2) 21 -219i e Z~



One can obtain an even tighter bound by treating all four

unknowns, i.e.,T1,'•2, arg(aI) and arg(a 2 ) as parameters to be

estimated, evaluating the tour by four Fisher information matrix,

inverting it, and t1en averaging over arg(a 1) and arg(a 2 ) to obtain _

the modified bound.

Thia somewhat laborious procedure is carried out in Appendix

A. The result is:

C'(E11 E (EI,2+E) 2 1 2t, (O2,,O) 21

2EIE. 27r[f2(oT, ) (TJ T,- coseCo

(4.8)

where

21[P(T))ýI2' 2 sin E4
[I-p 2 (T 2 ) cos 2  (4.9)

The above bound normalized by the conventional bound

(eq. (4.2)), averaged over , and using the Gaussian-shaped

autocorrelation function is shown in Figure (4.1). Also shown

is the ratio of eq. (4.7) which was more eimply obtained by always

treating arg(aI) and arg(a 2 ) as nuisance parameters. Notice that

19
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to
S--- equ(4. 7) '

" 5 --- equ(4. 8)

2

0 I2 3

( -Time Sepration) x (SigP;I RMS Bandwidth)

Fig. 4.1. Comparisun of modified and standard bounds on
variance of estimating the time-separation of two interfering
signals.
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when the separation is large (Z>3' nhese three bounds are

identical; while when the sepa''. ion is small, the modified bounds

are much tighter, especially when Z is iess then unity. The modi-

fied bound obtained under the assumption that arg(a 1 ) and arg(a 2)

are to be estimated (eq. (4.8)) is only slightly tighter than that

obtained under the assumption that they are known to the estimator

(eq. (4.7)).

5. Distributed Targets

In this section, we turn our attention to a rather different

class of radar returns, namely, the distributed targets. One very

commonly known distributed radar echo is the wake trailing a re-entry

vehicle. Such signals also occur as a result of disturbances in

communication media. References [21 and [81 contain several examples

of random signals in radar and communication applications. Figure

(5.1) is a simple illustration of random signals contained in radar

returns.

Alt'ujgh the basic formulation of the Cramer-Rao bound is the

same for various target configurations (Section 2), the explicit

3olution of the Cramer-Rao bound for estimates of parameters of

a random signal is, however, usually difficult to obtain. It was

shown (Reference [2]) that the Cramer-Rao bound for a random signal

m4y be obtained via the solution of a rather complicated integral

equation. Except for a few special cases, the solution can only be

obtained by using approximations. In this note, we consider the

21
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* . RANDOM

S: SCATTERERS

L4

.4 RADAR

UNDERLYING SCATTERING FUNCTION

RADAR PULSE AUTOCORRELATION
FUNCTION

S V IV.

RETURNS AT THE RECEIVER flUTPUT

EXPECTED RETURN
---. A SAMPLE RETURN

TK

Fig. S.,. Radar returns from targets with a random scattering
function.
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calculation of the Cramer-Rao bound for a certain class of random

signals via a sampled data approach. The random' signal considered

is assumed to be a conditional Gaussian process [2] with known time

varying mean and covariance functions. Since many radar data are

recorded in sampled form, the solution presented here seems to be

useful.

"We present a derivation of our main result in the Section 5.1.

A numerical example is given in the Section 5.2. A deterministic

point target and a Rayleigh target are limiting cases of the dis-

tributed target. The derivation which shows this relation is pre-

sented in the Appendix B.

5.1 Derivation

Since the distributed target is a very different class of

tarqet from those discussed in the previous sections, here we

re-state the Cramer-Rao bound with a slight inconsistency in

notation:

Let"t' denote the parameter to be estimated. The Cramer-Rao

bound on the variance of any unbiased estimator of a can be expres-

sed as

"2 > C E n y/a (Y/a))l 2 }

"(5.1)

-E 2 ln (p (Y/a))
3a 2 y/a

23
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where a = variance of an unbiased estimate of aa

Y = measurement process.

A distributed target is characterized by a complex scattering

function h(t,a) which is a conditional Gaussian random process with

mean

E(h(t,a)/a) d Mh(t,a) (5.2)hI

and covariance function

E[(h(t,a) - Mh(t,a)) (h(u,a) - Mh(U,a) /a]
(5.3) -

= H(t,a) 6(t-u)

I
where "*" denotes the complex conjugate and 6( ) is the Dirac

delta function. In addition, we assume that the measurement

process Y of eq. (5.1) is at tie output of a matched filter.

Let s(t) denote the transmitted signal, the returned signal before

the receiver is

w(t,a) = J s(t-x) h(x,a) dx (5.4)

The output of the matched filter is

y1 24



y(t,a) f w(xa) s*(x-t) dx + fn(x) s*(x-t)dx (5.5)

where n(t) is the receiver noise with Gaussian distribution, zero

mean, and one sided spectral density N0 • Introducting the signal

autocorrelation function

S4 p(t-T) = fs(x-T) s*(x-t)dx (5.6)

- Equation (5.5) can be rewritten as

y(t,a) =fp(t-x) h(x,a)dx + n(x) s*(x-t)dx (5.7)

The output process y(t,a) is a conditionally Gaussian random process

with mean

E(y(t,a)/a) = M y(t,a) = f p(t-x) Mh (x,a)dx (5.8)

and covariance function

S(tlt 2 ,;a) P(t 1 -x) P(t2-x) H(x,a)dx + N0 P(t 1 -t 2 ) (5.9)

*' In many radar and communication applications, the data at the

25' i 7'



matched filter output are often recorded and processed in sampled

form. Let Y li and Y 2i denote the data vectors representing the

sampled outputs from inphase and quadrature channels from the ith

set of measurements (or, a set of sampled data of the ith radar

pulse). Furthermore, it is assumed that the significant portion

of the signal energy is included in the data vector. The covariance

of Y.. is1J
•i j

S(t 1 ,tl;a) S(tlft 2 ;a) S(tlt M;a)

S(t 2 't 1 ;a) S(t 2 ,t 2 ;a) • . . S(t 2 ,tM;a)

(5.10)
R-

* *

S(tM,tl;a) S(tM,t 2 ;a) * * S(tM,tM;a)

for all i,j

where M is the number of samples in the data vector. The conditional

density Ror total N pulses can be expressed as

(5.11)
2 N

* P (Y/a) N1 exp -1/2 i R (Y. -M
2/a-(27TRI)N R2hij y ))

Si=1 j=1

where M is the vector with samples M (tia) i=l,..,M. Differentia-
y y

ting the natural log of Py/a(Y/a) with respect to a yields

26

1.



2 N

[ln(p (Y/a))] Y T (R (Y
aa y/a - i j "y 3a ] -y)

i=l j=i.

(5.12)

S2(YiM TR- 1 a3M

Squaring (5.12) and taking expectation yield

(2

NTr (R - + 2N

where Tr[ I denotes the trace of the enclosed matrix. To obtain

the above results, the following assumptions and matrix identities

have been used.

Assumptions
1) The data from the inphase and quadrature channels

are independent

2) For j~k, Yij and Yik are independent

Matrix Indentities

1) EfI(Y..-M) H Jy -M RJY f -M

l ( , [(Yjy)i R- (Yijy=0

2) E Y.ij K YijT K Y 2Tr[KRKR] + Tr 2[KR]
1 1J j i~j]

where K= =--
0. 0 a zero vector

2[1

27t



3) Tr [KR] =0

The final result for the Cramer-Rao bound is

0^ > C Tr [(R-1 .IR)2] + 2(Z TM -1 0

(5.14)

"This equation is the main result for the distributed target case.

We make the following remarks:

1 1) This formula is an approximate solution of the exact

formulation in Reference [2]. It is a valid approximation if the

data vector contains the significant portion of the signal energy.

This requirement can be easily satisfied in radar applications.

2) Since the data vectors are assumed independent, the above

result applies to any unbiased estimators which process N pulses

(or data sets) incoherently.

3) In most communication and radar signal processing appli-

cations, the fading channel/fluctuating targets are modeled by using

a scattering function specified by Mh(t,a) and H(t,a). The Cramer-

Rao bound is computed by first evaluating equations (5.8) and (5.9)

to obtain M (t,a) and S(ti;tj;a). This step may require numerical
y 1

integration.

t4) The above result is explicitly shown for time domain

data. Due to the duality property between time and frequency, it
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may be applied to frequency domain data (e.g., estimating the

Doppler spread of a fading signal) in a straightforward

manner.

5) This result can be extended to the multiple parameter

case by computing each terms of the Fisher information matrix

(Reference [1]) with the same approach as above.

5.2 Example

In this section, we consider an example which applies

to targets with zero mean and Gaussian-shaped covariance functions,

i.e.,

Mh(t,a) M (ylt,a) 0. for all t (5.15)

and

H(t,a) E 1 exp 1-1/2 (t-a)21 (5.16)
/•-h • h

where E is the signal energy. Notice that the parameter to be

estimated, a, is the center of H(t,a). Assuming that the radar

signal is a LFM pulse, the signal autocorrelation function of a

Hamming weighted LFM pulse can be approximated by

t2 2
- -- 2 - ((1.226B) 17)

p(t) e
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where P is the LFM bandwidth in Hz. Notice that with the above

assumptions, equation (5.9) can be evaluated analytically. Define

the following peak signal-to-noise ratio (S/N) at the receiver

output by using equation (5.9).

2%

S." -, 1 H(x,a) dx (5.18)

Using the above assumptionsv the Cramer-Rao bound normalized

to the inverse of B -N is evaluated with respect to the target second

central moment (oh) normalized to the inverse of B where N is the

numiber of pulses. The results for S/N 0,8, and 16 dB's are shown

in Figure (5.2). Notice that the estimate standard deviation degrades

rapidly for random targets with large time-spread (Oh) . When the

time-spread becomes small, the Cramer-Rao bound is asymptotic to

that for a Rayleigh target.

The above result can be extended to parameter estimates of

a RV wake. Results of Figure 5.2 correspond to the time-of-arrival

estimation of wakes with Gaussian shaped RCS. For wakes with any
i ~~other shapes, one simply replaces H(t a) by the underlying model .--

( corresponding to that shap3 where '•' is the wake parameter to be
I' estimated.[6. Summary and Conclusions

Certain applications of the Cramer-Rao bound to problems in
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B =LFM B3ANDWIDTH IN RAD/SECOND

10 N =NUMBER OF PULSES

-~1S/N 0ODB

0 BD

Gx B

Foit RAYLEIGH TARGETS:4J(_C.R.B.)xBx4W= .78 FOR S/N 0 DB

.2736 8 8DB
I .088 =16DB

X'ig. 5.2. The Cramer-Rao bound for estimating the mean of a
V. tiPmC-spread target.
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radar echo time-of-arrival estimation have been presented. These

applications encompass point target echos, two-point target echos,

and distributed target echos.

With respect to point targets, application of the modified

bound on the variance of time-of-arrival estimates, valid for

estimators which are unbiased for every value of signal amplitude,

shows the following:

a. the bound for Swerling IV targets is twice that

for nonfluctuating targets having the same mean

signal energy.

b. No such estimator has finite variance for Swerling

II targets unless there is a priori information

regarding the Lime-of-arrival. When such information

is available, the resulting modified bound, equation

(3.12), is usually tighter than the standard bound

commonly used.

When applied to the problem of estimating the apparent extent of

a two-point target, the standard Cramer-Rao bound, equation (4.2), is

independent of the target extent; whereas the modified bound,

equation(4.4),does display the effect of interference between the

two point scatterers and is uniformly tighter than the standard

bound. Results shown in Figure 4.1 indicate that the effective

resolution of a signal, for this purpose, is about 30% to 50% of
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its reciprocal RMS bandwidth in radians/sec. This corresponds to

25% to 40% of the reciprocal instantaneous bandwidth for a LFM

pulse.

In applying the Cramer-Rao bound to estimates of the parameters a

of echos from distributed targets, a sampled-data formulation was

used. The general result, equation(5.14),,for the scalar case was

applied to the case wherein the target is random having a scattering

function which is a Gaussian-shaped function of range. Results of

this analysis, given in Figure 5.2, show the degradation of the

time-of-arrival estimate as the time-spread of the target echo

increases.

Although our discussion has centered on the analysis of accuracy

of time-of-arrival estimates, the re;.ults are equally applicable

to problems in estimating Doppler shift, recognizing the time- ¶

frequency duality. Thus, all of our analyses can be made to apply

to Doppler shift estimation by simply interchanging frequency and

time variables. Similarly, the results are applicable to angle-of-

arrival estimation problems for a linear aperture by appropriately

reinterpreting the time variable as off-boresight angle and the

frequency variable as distance along the aperture, measured in

wavelengths.
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APPENDIX A

Derivation of Equation (4.8)

Equation (,48) was obtained by evaluating and inverting

the Fisher Inforation iatrix by treatinlg TVT 2, arg(aI and

arg(a 2 ) as parameters. Restating the received signal

r(t) a s(t-. 1 ) + a 2 s(t--r2  + w(t) (B.1)

The log of the conditional density function is

lnpr -No Wt(t) ais(- 1) - a 2 S(t-t 2 ) j2 dt (B.2)

!
Evaluating partial derivatives of lnp and taking expectationsr

yield
12 inI

E anpr 21a12 ()
D T. i

___ij = .-21all ajl 5('r) cos e ; for iO j

(a 2lnp, r
1 > .

. E• C i, = 0
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E( .p r -2alLaI sin ; for iiij

3 2 1np r 2
r = -21ai1 2

1

E -21aillaj 0 (T) cos 0 ; for i~j

where 0 = arg(aI) - arg(a 2 )

I= T -T

P(T) = signal autocorrelation function

=j[s(t) s*(t-r)dt

d-r

S=d 2 p

di 2

Using the above results, the Fisher Information matrix is:
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2a~ Ia (o a1 a 2I ) co al !AT) a 2 ~ sinil0

211 1al 1i cost' 21a2  (0) Ia 1 a~)sn

2

0 laIIa a2 1;(1) Sint' Ia1!2 ! 1llki of

lall la2KI(r) sino 0 Ia.,, Ia Ir4T) cos() Ia ! 21

(B3.3)

Since we are only interested in evaluating the bound on tr, one

need not invert the complete matrix. instead, we will apply the

following matrix identity to find the inverse corresponding to

the upper 2x2 portion of F.

Matrix Identity

GivenAA
A 11 12] 1

[2 1  A2 2J

A- B=[11 122

-B B12

where A.,. and B.. are partitions of A and B, respectively, then
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B 1 ii (A 1 1  A A1 2 A2 2  A 2 1 )

Applying the above identity to matrix F yields

F F F -1F
11 12 22 21

.2 p(T)p (T)si 2

2

0

P()220 I2 2
prp(c) sin 2e P2.. p(Tr)sin0

L a a ( ( ) 1-P (T)cos 2  a c s a 1  1~ 1...P (T)C05 20j

(B.4)

/p(T 1  " 2) sin 2 0
= PT)+ 1-p() ) (B.5)

Equation (B.4) becomes

F F 12 F 2 2  F21

K2 IalIa IiP(T,T,O) COS 0jall ip(Or,O,)2

(B.6)
_2

0 al1 1a21 r 'i,) cose a1 pOT0

**. 2 1



its inverse is

12 -1

laa.12a l)(T'0) Cos 0

1 mE

N
o

t2

_-Ja ~ (ip ý(O'T,0) - coseaI 0)(To

21a1 212a

(B.7)

The bound on a 2 is therefore
T

2
a> C' (E11E,)

N (E +E) (Ot) + 2VfWE I1T,'u,6) cosO
o 12 12 2 (B.8

-i I E a 2 
2 ) (TT,() COS 2 1( ,)c 8

1 2

where El=lal112 and E =a 212 were used. The modified bound is

obtained by averaging Ca(EE , 0) over 0, i.e.,

C,(EE1 1 2  ) - C(ETE,2 ') dO (B.9)

0
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It however, can be shown that

(B.10)

l(TT-,O) cose dO=0

f 2 2 2Vi 0 o (0,T,O) - (p 8 cos20]

because

IP (T,¶Tie)

I.)[ 2 (O,T,e) -- 22(T, o s C ]

is an even and positive function of e. Using this property,

"equation (B.9) becomes

N _____ 1 27r ip(O,T,6) do
C',(EE 2 2 f2

Tr - -2 [W2 (0,TO) -2 (T,-,e) cos 63
0

(B.11)

This is equation (4.8).

~3I
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APPENDIX B

Limiting Cases of Distributed Targets

In this appendix, we prove the convergence of the distri-

"buted targets to two limiting cases, namely, a target with known

amplitude and phase and a Rayleigh target.

B.1 A Target with Known Amplitude and Phase

Assume that the target has a deterministic scattering

function with known amplitude and a denotes the time-of-arrival

of the returned signal. This implies

Mh(t,a) = /E 6 (t-a) (B.1)

and

H(t,a) = 0 (B.2)

where E is the signal energy. Using the above in (5.8) yields

SMy (t,a) =VE- p(t-a) (B.3)
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Substituting the above in (5.14) yields the following result for

noncoherently integrated N pulses.

C(point target) = . 1 (B.4)
CN2E yT -1i

,
0 (M RM

where MY MY . When the number of samples in My is large, then

*3a

•! MyT R-M • (signal r.m.s, bandwidth in-_ Yrad/sec) 2  (B.5)

The above bound converges to the Cramer-Rao bound for a known

target (Reference [3] or Section 3 above).

B.2 A Rayleigh Target

A Rayleigh target satisfies the following properties

Mh(t,a) = 0 (B.6)

H(t,a) = E 6(t-a) (B.7)

where E is the target energy. The Cramer-Rao bound then becomes
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.11

I, '

whereA - ~C(Rayleigh Target) = Tr [(R-1R)2] (B.8)NN

""Twhere =-Ey YT+

rF E y y T

.i ~p= [P(ti tj]

!i

S ~Pt ;t-a)

• %p(tM-a)

i 7 =da

The inverse of R can be expressed as follows by a simple

application of the matrix inversion lemma.

R = 1- [P-l-pl, (Tply, + N•%/E) -1 •Tpl1] (B.9)

11
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We will restrict the number of samples, M, to be an odd integer.

When M is even, the modification to the arguments to follow is
I sagtowr.teM+1i

straightforward. From the definitions above, the (-M--)th row

' (and column) of P is ,Y. Other rows/columns of P are just multiple

shifts of y. In addition, the center element of Y is unity and that

of t is zero. Let q denote a column vector with all elements
-4 .M+iequal to zero except the (-2--)th element which is equal to one.

" JThen

y = Pq (B.10)

or

q =P y (B.11)

Using the above transformation in (B.9) and after some manipula-

I tions one obtains

R - 1 (B.12)

R-1 -E [p-i T *T *T T]
RE R 1 [ (Y + Y T) _U(y yT+ Y YT) (B.13)
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where U is a (MxM) matrix with all the elements zero except the

center element which is equal to 1/(1+N /E).

Squa:ing (B.13) and after some manipulations one obtains

/ 01
i'• 2%{E/No0) 21-

C(Rayleigh Target) 2(E/N + 2 j. (B.14)•'• • ~~~(E/No) + 1 .- •. (.4

When the number of samples is large, then

YP T- . 2 (B.15)

The above bound converges to the Cramer-Rao bound for a Rayleigh

target (Reference 12] or Section 3 above).

44

44b

,,':•• ....... •• ••,... ,•,•i • ••'• I • '• • r '••'1•"•'• • • • • •i"• i "•i~'•"'"~i .... tu•' •



References

1. H. L. Van Trees, Detection, Estimation, and Modulation
Theory, Vol. I (Wiley, New York, 1968).

2. H. L. Van Trees, Detection, Estimation, and Modulation
Theory, Vol. III (Wiley, New York, 1971).

3. C. W. Helstrom, Statistical Theory of Signal Detection, 2nd
Edition (Pergamon Press, New York, 1968).

4. L. P. Seidman, "Performance Limitations and Error Calculations
for Parameter Estimation," Proc. IEEE 58, No. 5 (May 1970).

5. R. J. McAulay and E. N. Hofstetter, "Barankin Bounds on Para-
meter Estimation," IEEE Trans. Inf. Theory IT-17, 669-676
(November 1971).

6. J. Ziv and M. Zakai, "Some Lower Bounds on Signal Parameter
Estimation," IEEE Trans. Inf. Theory IT-15, 386-391 (May 1969).

7. P. Swerling, "Probability of Detection for FluctuatingTargets," Trans. IRE, PGIT IT-6, 269-308 (April 1960).

45



UNCLASSIFIED
SCCURITY CLAW&ATION OF THIS PAGE (Whom Usia Entered)

REPORT DOCUMiENTATION PAGE BFR OPEIGFR

11 ORI GV CCSINN.3 RECIPIENT'$ CATALOG NUMSER

LE (and Subs~le TYPEF REPORT & PERIOD COVERED

The Application of the Crarner-Rao Bound Technical *ote
to Estimates of Radar Return Time-of-Arrival'

/ for Several Target Configurations. 6. PERFORMING ORG. REPORT NUMBER

7. THOR(s) 6 OTATO RN UBR&

ChwBn/ -agM Robert =W./iIler F92-6C2

9. PFRFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM EL MENTPROJECT. TASK
Lincoln Laboratory, M,.I. T. RAWUBR
P.O. Box 73

Lexington, MA 02173 ProjecY 8X363*4D2ý15

11. CONTROLLING OFFICE NAME AND ADDRESS 1.RPý
Ballistic Missile Defense Program Office
Department of the Army ý 2.!jM!5001 Eisenhower Avenue13NUBROPAEAlexandria. VA 22333 5

14. MONI TORING AGENCY NAME &. ADDRESS (if difrn rVazaln.Office) 15. SECURITY CLASS. (of this report)

ElcrncSystems Divisi c Unclassified
Hanscom AFB ' f )
Bedford, MA 01731 15a. DECL ASSI FI CATION DOWNG)nADING

- SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimite(./- ---

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different froan Report)

18. SUPPLEMENTARY NOTES

None

19. KEY WORDS (Continue an reverse side if necessary and identify by block number)

Cramer-Rao bound distributed targets Swerling targets
radar echo estimations point targets Rayleigh target
target echos two-point targets

20 ABSTRACT (Continue on reverse side if necessary sand identify by block number)

In this report, certain applications of the Cramer-Rao bound to problems in radar echo time-of-arrival
distributed target echos. With respect to point targets and two-point targets, a modified Cramer-Rao bound

is derived and the results are substantially tighter than those of the conventional Cramner-Rao bound. In
applying the Cramer-Rao bound to distributed targets, a sampled-data formulation is presented and a
numerical example corresponding to a wake parameter estimation problem is given to illustrate the results.

__ __ __I__ __I_ _ __ __ _

DD FOM 1473 EDITION OF 1 NOV 65 IS OBSOLETE UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered;~

I10'0


